jueves, 6 de septiembre de 2012

Más semiconductores... El transistor


Transistor

Estos semiconductores se utilizan como elementos de conmutación; pueden trabajar a una velocidad mayor en comparación con los tiristores, pero su capacidad de tensión (voltaje) y corriente son inferiores.

Transistorer (croped).jpg

Grupos funcionales

Dentro de los transistores de potencia podemos encontrar 4 grupos funcionales:
  1. Transistores bipolares de juntura (BJT)
  2. Transistores semiconductores de metal de óxido de efecto de campo (MOSFET)
  3. Transistores de induccion estática (SIT)
  4. Transistores bipolares de compuerta aislada.
 
 

Otro tipo de semiconductores

Tiristores

El tiristor es un componente electrónico constituido por elementos semiconductores que utiliza realimentación interna para producir una conmutación. Los materiales de los que se compone son de tipo semiconductor, es decir, dependiendo de la temperatura a la que se encuentren pueden funcionar como aislantes o como conductores. Son dispositivos unidireccionales porque solamente transmiten la corriente en un único sentido. Se emplea generalmente para el control de potencia eléctrica.
El dispositivo consta de un ánodo y un cátodo, donde las uniones son de tipo PNPN entre los mismos. Por tanto se puede modelar como 2 transistores típicos PNP y NPN, por eso se dice también que el tiristor funciona con tensión realimentada. Se crean así 3 uniones (denominadas J1, J2, J3 respectivamente), el terminal de puerta está conectado a la unión J2 (unión NP).

File:Thyristor circuit symbol es.jpg

Funcionamiento básico

El tiristor es un conmutador biestable, es decir, es el equivalente electrónico de los interruptores mecánicos; por tanto, es capaz de dejar pasar plenamente o bloquear por completo el paso de la corriente sin tener nivel intermedio alguno, aunque no son capaces de soportar grandes sobrecargas de corriente.

El diseño del tiristor permite que éste pase rápidamente a encendido al recibir un pulso momentáneo de corriente en su terminal de control, denominada puerta cuando hay una tensión positiva entre ánodo y cátodo, es decir la tensión en el ánodo es mayor que en el cátodo. Solo puede ser apagado con la interrupción de la fuente de voltaje, abriendo el circuito, o bien, haciendo pasar una corriente en sentido inverso por el dispositivo. Si se polariza inversamente en el tiristor existirá una débil corriente inversa de fugas hasta que se alcance el punto de tensión inversa máxima, provocándose la destrucción del elemento.

Para que el dispositivo pase del estado de bloqueo al estado activo, debe generarse una corriente de enganche positiva en el ánodo, y además debe haber una pequeña corriente en la compuerta capaz de provocar una ruptura por avalancha en la unión J2 para hacer que el dispositivo conduzca. Para que el dispositivo siga en el estado activo se debe inducir desde el ánodo una corriente de sostenimiento, mucho menor que la de enganche, sin la cual el dispositivo dejaría de conducir.


Usos frecuentes de los diodos

Funcionamiento de un diodo rectificador común de media onda

Para comprender mejor la forma en que funciona un semiconductor diodo, es necesario recordar primero que la corriente alterna (C.A.) circula por el circuito eléctrico formando una sinusoide, en la que medio ciclo posee polaridad positiva mientras y el otro medio ciclo posee polaridad negativa.






Animación de un circuito rectificador simple de media onda, compuesto por un solo diodo.


En la animación de arriba se puede apreciar que en el proceso de rectificación de la corriente alterna (C.A.) utilizando un solo diodo, durante un primer medio ciclo negativo los electrones circularán por el circuito atravesando primero el diodo y a continuación el consumidor o carga eléctrica, representado por una resistencia (R). En ese instante, en los extremos de la resistencia se podrá detectar una corriente directa "pulsante" que responde a ese medio ciclo. En el medio ciclo siguiente (esta vez positivo), los electrones cambiarán su sentido de circulación y no podrán atravesar ni la resistencia, ni el semiconductor diodo, porque en ese instante el camino estará bloqueado por el terminal positivo del diodo y no habrá circulación de corriente por el circuito. A continuación y durante el medio ciclo siguiente negativo, de nuevo el diodo vuelve a permitir el paso de los electrones, para bloquearlo nuevamente al cambiar la corriente el sentido de circulación y así sucesivamente mientras se continúe suministrándole corriente al diodo.


Funcionamiento de los diodos rectificadores de onda completa

Cuando un circuito eléctrico o electrónico requiere de una corriente directa que no sea pulsante, sino mucho más lineal que la que permite un simple rectificador de media onda, es posible combinar de dos a cuatro diodos rectificadores de forma tal que la resultante sea una corriente directa (C.D.) con menos oscilaciones residuales.





La mayoría de los circuitos eléctricos que funcionan con corriente directa (C.D.), emplean rectificadores de onda completa compuestos por cuatro diodos. A continuación se ilustran tres formas de esquematizar en un diagrama la conexión de esos cuatro diodos para obtener un rectificador de onda completa.






Diferentes formas de representar esquemáticamente un mismo puente rectificador de onda completa integrado por cuatro diodos, aunque la figura de la izquierda es la forma más común de representarlo.

 

Un puente rectificador de cuatro diodos funciona de la siguiente forma: como se puede observar en la parte (A) de la ilustración, durante el primer medio ciclo negativo (–) de la corriente que proporciona la fuente de suministro alterna (C.A.) conectada al puente rectificador, los electrones atraviesan primero el diodo (1), seguidamente el consumidor (R) y después el diodo (2) para completar así la circulación de la corriente de electrones por una mitad del circuito correspondiente al puente rectificador.


Como aclaración, al llegar los electrones en su recorrido al punto de conexión (a), no pueden atravesar el diodo (4) porque, de acuerdo con la colocación que éste ocupa en el circuito, bloqueará o impedirá la circulación de los electrones en ese sentido.

Una vez que los electrones continúan su recorrido, al llegar al punto de conexión (b), tampoco pueden atravesar el diodo (4), porque la corriente de electrones nunca circula en dirección a su propio encuentro (de forma similar a como ocurre con la corriente de agua en un río), sino que siempre se mueve en dirección al polo opuesto de la fuente de suministro que le proporciona la energía eléctrica, o sea, el polo positivo de la corriente alterna (C.A.) en este caso.

En la parte (B) de la ilustración podemos ver que la corriente alterna cambia la polaridad y, por tanto, el sentido de circulación de los electrones. En esta ocasión, los electrones atraviesan primeramente el diodo (3), a continuación atraviesan el consumidor (R) y, por último, el diodo (4) para retornar a la fuente de suministro eléctrico y completar así el circuito. De forma similar a lo ocurrido en el ciclo anterior, ahora el diodo (1) es el encargado de bloquearle el paso a los electrones para que se puedan dirigir en dirección al consumidor (R), mientras que el diodo (2) tampoco pueden atravesarlo los electrones, porque no pueden ir a su propio encuentro, tal como ocurre en el medio ciclo anterior.





Animación del funcionamiento del rectificador de onda completa o puente rectificador, compuesto por cuatro diodos.

Como se habrá podido apreciar, tanto en el primer medio ciclo, como en el siguiente, los signos de polaridad positiva (+) y negativa (–) a la salida del circuito del puente de rectificación donde se encuentra conectado el consumidor (R), se mantiene constante, pues una vez rectificada la corriente alterna (C.A.) y convertida en directa (C.D.) las polaridades no sufren variación alguna como ocurre con la corriente alterna a la entrada del circuito. En esa ilustración se puede ver también que a la salida del circuito de rectificación se obtienen una serie de pulsaciones continuas, es decir, no intermitentes como ocurre cuando se emplea un solo diodo rectificador en un circuito de media onda.

Polarizacion de un diodo

Cuando se somete al diodo a una diferencia de tensión externa, se dice que el diodo está polarizado, pudiendo ser la polarización directa o inversa.

Polarización directa de un diodo

La batería disminuye la barrera de la zona de carga espacial, permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo polarizado directamente conduce la electricidad.
Para que un diodo esté polarizado directamente, se debe conectar el polo positivo de la batería al ánodo del diodo y el polo negativo al cátodo. En estas condiciones podemos observar que:
  • El polo negativo de la batería repele los electrones libres del cristal n, con lo que estos electrones se dirigen hacia la unión p-n.
  • El polo positivo de la batería atrae a los electrones de valencia del cristal p, esto es equivalente a decir que empuja a los huecos hacia la unión p-n.
  • Cuando la diferencia de potencial entre los bornes de la batería es mayor que la diferencia de potencial en la zona de carga espacial, los electrones libres del cristal n, adquieren la energía suficiente para saltar a los huecos del cristal p, los cuales   previamente se han desplazado hacia la unión p-n.      
  • Una vez que un electrón libre de la zona n salta a la zona p atravesando la zona de carga espacial, cae en uno de los múltiples huecos de la zona p convirtiéndose en electrón de valencia. Una vez ocurrido esto el electrón es atraído por el polo positivo de la batería y se desplaza de átomo en átomo hasta llegar al final del cristal p, desde el cual se introduce en el hilo conductor y llega hasta la batería.

Polarización inversa de un diodo

En este caso, el polo negativo de la batería se conecta a la zona p y el polo positivo a la zona n, lo que hace aumentar la zona de carga espacial, y la tensión en dicha zona hasta que se alcanza el valor de la tensión de la batería, tal y como se explica a continuación:
  • El polo positivo de la batería atrae a los electrones libres de la zona n, los cuales salen del cristal n y se introducen en el conductor dentro del cual se desplazan hasta llegar a la batería. A medida que los electrones libres abandonan la zona n, los átomos que antes eran neutros, adquieren estabilidad, con lo que se convierten en iones positivos.
  • El polo negativo de la batería cede electrones libres a los átomos de la zona p. Recordemos que estos átomos sólo tienen 3 electrones de valencia, con lo que una vez que han formado los enlaces covalentes con los átomos de silicio.Cuando los electrones libres cedidos por la batería entran en la zona p, caen dentro de estos huecos con lo que los átomos adquieren estabilidad, convirtiéndose así en iones negativos.       
  • Este proceso se repite una y otra vez hasta que la zona de carga espacial adquiere el mismo potencial eléctrico que la batería.
En esta situación, el diodo no debería conducir la corriente; sin embargo, debido al efecto de la temperatura se formarán pares electrón-hueco a ambos lados de la unión produciendo una pequeña corriente (del orden de 1 μA) denominada corriente inversa de saturación. Además, existe también una denominada corriente superficial de fugas la cual conduce una pequeña corriente por la superficie del diodo; ya que en la superficie, los átomos de silicio no están rodeados de suficientes átomos para realizar los cuatro enlaces covalentes necesarios para obtener estabilidad. Esto hace que los átomos de la superficie del diodo, tanto de la zona n como de la p, tengan huecos en su orbital de valencia con lo que los electrones circulan sin dificultad a través de ellos. No obstante, al igual que la corriente inversa de saturación, la corriente superficial de fuga es despreciable.


FORMACIÓN DE UN DIODO DE SILICIO DE UNIÓN "p-n"

En el momento que un cristal semiconductor de silicio (Si) de conducción “tipo-p” (positivo) se pone en contacto con otro cristal semiconductor también de silicio, pero de conducción “tipo-n” (negativo), se crea un diodo de empalme o de unión “p-n”. Si al diodo así formado le conectamos una fuente de corriente eléctrica, éste reacciona de forma diferente a como ocurre con cada una de las dos partes semiconductoras por separado, tal como se pudo ver en el ejemplo anterior.


Representación gráfica de las dos  partes  que  componen. un diodo de silicio de unión p-n: a la izquierda la parte. positiva (P) y a la derecha la negativa (N). En la ilustración. se puede apreciar la “zona de deplexión” que se forma. alrededor del punto donde se unen los dos cristales. semiconductores de diferente polaridad. El punto de unión. p-n de los dos cristales se denomina “barrera de potencial. del diodo”.

En el punto de unión p-n de las dos piezas semiconductoras de diferente polaridad que forman el diodo, se crea una “barrera de potencial”, cuya misión es impedir que los electrones libres concentrados en la parte negativa salten a la parte positiva para unirse con los huecos presentes en esa parte del semiconductor. Hasta tanto los electrones no alcancen el nivel de energía necesario que le debe suministrar una fuente de energía externa conectada a los dos extremos del diodo, no podrán atravesar esa barrera.

Por otra parte, a ambos lados de la barrera de potencial se forma una “zona de deplexión” (también llamada zona de agotamiento, de vaciado, de carga espacial o de despoblación). Esa es una zona o región aislada, libre de portadores energéticos, que se origina alrededor del punto de unión de los dos materiales semiconductores dopados de diferente forma y que poseen también polaridades diferentes. La función de la “zona de deplexión” es alejar a los portadores de carga energética (electrones) del punto de unión p-n cuando el diodo no se encuentra energizado con la tensión o voltaje suficiente, o cuando se energiza con una tensión o voltaje inverso.

El efecto que se crea al unir simplemente un cristal semiconductor de silicio tipo-p con otro de tipo-n, equivale a tener conectada una batería o fuente de suministro de energía imaginaria en los extremos del diodo. Bajo esas circunstancias la “zona de deplexión” que se crea a ambos lados de la unión p-n obliga a los huecos o agujeros de la parte positiva (P) alejarse de ese punto de empalme o unión, mientras que los electrones en exceso en la parte negativa (N) reaccionan de igual forma alejándose también del propio punto, hasta tanto no adquieran la energía suficiente que les permita atravesar la barrera de potencial.

Para que los electrones en exceso en el semiconductor con polaridad negativa (N) puedan atravesar la barrera de potencial del diodo y saltar a la parte positiva y “llenar” los huecos, es necesario energizarlos suministrándoles una corriente eléctrica o diferencia de potencial en los extremos del diodo, por medio de una batería o cualquier otra fuente de fuerza electromotriz. Cuando la tensión aplicada al diodo de silicio alcanza 0,7 volt, el tamaño de la zona de deplexión se reduce por completo y los electrones en la parte negativa adquieren la carga energética necesaria que les permite atravesar la barrera de potencial. A diferencia de los diodos de silicio (Si), los de germanio (Ge) sólo requieren 0,3 volt de polarización directa para que la zona de deplexión se reduzca y los electrones adquieran la carga energética que requieren para poder atravesar la barrera de potencial.

Diodos


 Un diodo semiconductor está hecho de cristal semiconductor como el silicio con impurezas en él para crear una región que contiene portadores de carga negativos (electrones), y una región en el otro lado que contiene portadores de carga positiva (huecos). El límite dentro del cristal de estas dos regiones, llamado una unión PN, es donde la importancia del diodo toma su lugar. El cristal conduce una corriente de electrones del lado n (llamado cátodo), pero no en la dirección opuesta; es decir, cuando una corriente convencional fluye del ánodo al cátodo (opuesto al flujo de los electrones).


Arriba.- Símbolo gráfico general de identificación de un semiconductor diodo. 
Abajo.- Aspecto externo real de un diodo de silicio de estado sólido en el cual el ánodo (positivo) sería el. extremo que se ha señalado con la letra “A” y el cátodo (negativo) el extremo opuesto, señalado con la letra “K”. Este extremo está siempre rodeado por una franja color plata para identificar que corresponde al cátodo.

Al unir ambos cristales, se manifiesta una difusión de electrones del cristal n al p. Al establecerse una corriente de difusión, estas corrientes aparecen cargas fijas en una zona a ambos lados de la unión, zona que recibe el nombre de región de agotamiento.
A medida que progresa el proceso de difusión, la región de agotamiento va incrementando su anchura profundizando en los cristales a ambos lados de la unión. Sin embargo, la acumulación de iones positivos en la zona n y de iones negativos en la zona p, crea un campo eléctrico que actuará sobre los electrones libres de la zona n con una determinada fuerza de desplazamiento, que se opondrá a la corriente de electrones y terminará deteniéndolos.
Este campo eléctrico es equivalente a decir que aparece una diferencia de tensión entre las zonas p y n. Esta diferencia de potencial (VD) es de 0,7 V en el caso del silicio y 0,3 V para los cristales de germanio.


Semiconductor tipo P

Un Semiconductor tipo P se obtiene llevando a cabo un proceso de dopado, añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso positivos o huecos).
Cuando se añade el material dopante libera los electrones más débilmente vinculados de los átomos del semiconductor. Este agente dopante es también conocido como material aceptor y los átomos del semiconductor que han perdido un electrón son conocidos como huecos.
El propósito del dopaje tipo P es el de crear abundancia de huecos. En el caso del silicio, un átomo tetravalente (típicamente del grupo 14 de la tabla periódica) se le une un átomo con tres electrones de valencia, tales como los del grupo 13 de la tabla periódica (ej. Al, Ga, B, In), y se incorpora a la red cristalina en el lugar de un átomo de silicio, entonces ese átomo tendrá tres enlaces covalentes y un hueco producido que se encontrará en condición de aceptar un electrón libre.
Así los dopantes crean los "huecos". No obstante, cuando cada hueco se ha desplazado por la red, un protón del átomo situado en la posición del hueco se ve "expuesto" y en breve se ve equilibrado como una cierta carga positiva. Cuando un número suficiente de aceptores son añadidos, los huecos superan ampliamente la excitación térmica de los electrones. Así, los huecos son los portadores mayoritarios, mientras que los electrones son los portadores minoritarios en los materiales tipo P. Los diamantes azules (tipo IIb), que contienen impurezas de boro (B), son un ejemplo de un semiconductor tipo P que se produce de manera natural.

Semiconductor tipo N

Un Semiconductor tipo N se obtiene llevando a cabo un proceso de dopado añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso negativos o electrones).
Cuando se añade el material dopante aporta sus electrones más débilmente vinculados a los átomos del semiconductor. Este tipo de agente dopante es también conocido como material donante ya que da algunos de sus electrones.
El propósito del dopaje tipo n es el de producir abundancia de electrones portadores en el material. Para ayudar a entender cómo se produce el dopaje tipo n considérese el caso del silicio (Si). Los átomos del silicio tienen una valencia atómica de cuatro, por lo que se forma un enlace covalente con cada uno de los átomos de silicio adyacentes. Si un átomo con cinco electrones de valencia, tales como los del grupo 15 de la tabla periódica (ej. fósforo (P), arsénico (As) o antimonio (Sb)), se incorpora a la red cristalina en el lugar de un átomo de silicio, entonces ese átomo tendrá cuatro enlaces covalentes y un electrón no enlazado. Este electrón extra da como resultado la formación de "electrones libres", el número de electrones en el material supera ampliamente el número de huecos, en ese caso los electrones son los portadores mayoritarios y los huecos son los portadores minoritarios. A causa de que los átomos con cinco electrones de valencia tienen un electrón extra que "dar", son llamados átomos donadores. Nótese que cada electrón libre en el semiconductor nunca está lejos de un ion dopante positivo inmóvil, y el material dopado tipo N generalmente tiene una carga eléctrica neta final de cero.